
-. ~A - 1 --- ~ .~ 73 4 049 .. 4*

SECURITY CLASSIFICATION OF THI A1

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS .,

unclassified

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/IAvE1rPRe'T-0Oumen, as been approveunlimited Ifor publL r ae t
2b. DECLASSIFICATION1I OWNGRADING SCHEDULE distribution is unlimited. %'

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
The Regents of the Universit (if applicable)

of California SPAWAR

6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Berkley Calforia 9720Space and Naval Warfare Systems Command

Washington, DC 20363-5 100

Be. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable) ,

DARPA % _______________ .-

8c~ ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS.,*i
140 iso lv.PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22209 ELEMENT NO. NO. NO. ACCESSION NO.~

11. TITLE (include Security Classification) l

* Design Considerations for a Prolog Silicon Compiler
12. PERSONAL AUTHOR(S) Parc C.M ee

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) S. PAGE COUNT
technical FROM _ ___TO ____ *September 18. 1986 * 25

16. SUPPLEMENTARY NOTATION%

17. COSATI CODES 1B. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP

19. ABSTRACT (Continue on reverse if necessary and identify by block number)r.r

Encose ji paper

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UUNCLASSIFIEIImu.MITED 03 SAME AS RPT. 03 OTIC USERS unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 2c. OFFICE SYMBOL ' '

r..

L DD FORM 1473 .8w MAR 33 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE

F 7 77; > V5 - -

Design Considerqtions.for a Prolog SiliconC~ompiler

Patrick C. McGeer
(principal author)

Department of Electrical Engineering and Computer Science
University of California at Berkeley

Berkeley, CA 94720
(415) 642-4694

William R. Bush

Department of Electrical Engineering and Computer Science %;
University of California at Berkeley

Berkeley, CA 94720
(415) 642-4694

Jonathan D. Pincus

Department of Electrical Engineering and Computer Science
University of California at Berkeley

Berkeley, CA 94720
(415) 643-8229

%. %j

Alvin M. Despain

Department of Electrical Engineering and Computer Science
University of California at Berkeley ,&,,'.

Berkeley, CA 94720
(4 1 5) 6 4 2 -5 6 1 6 . - ' , -

I IN K '-

k6 %

S 6 * %

,.%%

Design Considerations for a Prolog Silicon
Compiler

ABSTRACT

We are designing a specialized silicon compiler using the
programming language Prolog. This paper describes our design
approach and our experiences in the initial phase of the project.
Our compiler, ASP, is specialized for designing high-
performance microprocessors. It is structured as a set of
cooperating programs, written in Prolog, which communicate
through constraint passing. The constraints are captured as
notations on the system's single data structure. The design
philosophy underlying ASP, its interface, major component
programs and basic data structure are described. The choice of <"
the language Prolog as the development and user language of
ASP is discussed with some of its advantages and
disadvantages illustrated.

Category number: 4

%

~. %

N

v -.

"4:.

Mifl

1. Introduction

The ASP (Advanced Silicon Compiler in Prolog) project's primary goal is

the production of a silicon compiler that can create, from a high-level

specification, a very high performance processor with minimal designer %

interaction. It happens that we are not only interested in using Prolog as a

design language, but also in designing high-performance microprocessors

specialized for the execution of Prolog(Dob851. As a result, we are investigating

new techniques in such areas of automated chip design as timing-directed

global routing, optimization of pipelined bus organization and control, and an

automatically generated, parameterized off-chip interface.

% Simultaneous progres on many fronts requires, as a first step, the.%

development of an environment in which experiments may be performed and

the tools can be integrated. The ASP environment includes an array of

integrated simulation and debugging tools, as well as a usable skeleton of the

overall compiler. Given the skeleton, each module of the compiler may be

improved independently. %

. Silicon compilers

David Johansen of Caltech first proposed the idea of a silicon compiler in

1979 [Joh79]. Much of IC design is a fairly mechanical task of putting blocks

into prearranged slots and routing between them; a silicon compiler simply

automates this job. Silicon compilation is distinguished from design tools -

such as layout editors and stick compilers - by the amount of designer

interaction required and the level of abstraction dealt with by the tool. ., n

d, -. -. . *. - .,

2

NO

Layout editors such as Magic, Caesar and Kic-2 require the designer to lay

down paint. Although Magic permits the designer to view cells as physical

abtactions at higher levels through use of a cell hierarchy, there is no

automatic translation between different levels of abstraction: a user cannot

eater a circuit at an arbitrary level of abstraction and expect the tool to

generate the paint layers for him. Thus interaction is continually required at

every level of the design.

LAVA and Sticks-style compilers allow the user to specify the circuit in

terms of sticks as opposed to paint. This is a slightly higher level of

abstraction, and translation between the two levels is automatic, but the

description is still on a relatively low level.

In a silicon compiler, however, the designer inputs a description of the chip

at some suitably high level of abstraction, and the program performs the

translation down to the physical level. The designer should not be called on to

aid the program in its transformation; any design decisions should be specified

with the description.

The analogy with programming .nguage compilation is tempting. Layout

editors are equivalent to being able to input an program as a file rather than

having to toggle it in through the front panel. A LAVA-type program is more

like a symbolic assembler: some additional abstraction is permitted, but the

eorrepondence to the object code is still extremely close: in order for translation

to be called compilation, the language being translated must be relatively high

level. Finally, when compiling a program, it is certainly not desirable for the

2k; 11

3lo

programmer to be continually forced to guide the compiler down the correct

paths.

3& Previous work

In addition to defining the term, Johannson also designed Bristle Blocks, 2-

[Joh79] generally heralded as the first silicon compiler. It uses parameterized

cells; his initial program only designed the data path, but along with a channel

router and a control generator, it is now being marketed as Genesil by Silicon

Compilers, Inc. Bristle Blocks is a relatively low level compiler, the designer

views the circuit as a combination of the pre-defined cells.

Lincoln Labs' MacPitts [SiSoC82] took a high-level description of the chip

in a LISP-based HDL The original version used fixed cells along the data path,

a channel router based on the Rivest-Fidducia approach, and a single

Weinberger array for control. The current version, marketed by MetaLogic,

Inc., as MetaSyn, includes parameterized cells and a more sophisticated

partitioned control, consisting of a combination of PLAs and Weinberger

Arrays.

4. Language issues

Most CAD systems are written in C or LISP; the choice of Prolog may !Lis

appear upusual. Several features of Prolog, however, make it particularly

well-suited for our purposes.

%. .*... v. .-. '. ..-. , v ... , *.v.,... -,-. V..V... v

~E. W~IU N - *-

4

4.1. Prolog As A Specification Language

Prolog differs from most other programming languages in that its

semantics are tuned towards the description of a problem, rather than the

implementation of its solution. This implies that the distinction between

program and data is much less clear than it is in a conventional programming

language. In hardware terms, the language is inherently a specification

language; no constructs or operators are required other than those provided in

the language itself.

4.2. Isotropy

An important feature of any design tool is isotropy: the language and

environment that a user or programmer sees should be independent of either

his position in the design space or his level of sophistication. This quality is

rarely espoused, but it is extremely important. DA systems written in Lisp

have proven effective since a user has learned Lisp in the course of learning the

application-specific Lisp subset that he acquires when he learns the DA system.

This permits such a user to extend and tailor the system to meet his needs.

4.3. Automatic Parallelism Detection

Parallelism detection is much more important in hardware design than in

software desig. Most programs run on uniprocessor hardware, and so most

optimizations other than constant folding, loop unwinding and the elimination

of redundant code have little effect. However, hardware designers face no such

restrictions: indeed, one of the principle arts of the microarchitect is the parallel

___ -/.* 1 %

utilization of hardware.

Our research group's efforts at parallelism detection for multiprocessing

Prolog applications (Cha85] are, we believe, directly applicable to hardware

design. The key to this is that much of the potential parallelism of a Prolog '"

program, as opposed to a Lisp or C program, is inherent and explicit in the

code. It seems clear that the parallelism of a Prolog hardware specification

should also be immediately apparent.

4.4. Prolog's Built-In Database

A silicon compiler requires a large database component, if for no other

reason than the sheer amount of information present. Prolog contains a built-in

relational database: indeed, one can argue that Prolog is merely a

generalization of a relational database. Hence this aspect of the compiler is N.0%.

already completed.

4.5. Support for Rule-Based Systems

Since no polynomial-time algorithms exist for many of the tasks involved

in silicon compilation, it is likely that individual modules of ASP may best be

structured as expert systems. Hence we desired a language which permits

rule-based programming without major modification. Prolog obviously meets

this requiement. %

4.6. The Logical Variable

Finally, Prolog permits a form of lazy evaluation. It is possible in Prolog

to equate numerous variables in a user-transparent fashion through the Prolog

%
oft

6

mechanism of unification. When this is done, assignment of a value to any one

sets alH the values. These assignments are all conditional; they are

automatically undone if the particular heuristic at which they were bound fails.

4.7. Other Considerations ,'

It has become part of the programmers' folklore that Prolog is too slow for

I production systems. This may be because of the almost universal use of Prolog

interpreters, which run at about 1500 LIPS (Logical Inferences/second) on a Vax

11/750. However, we have constructed a high performance processor and

compiler for Prolog, that runs at about 300 kilolips, or roughly two orders of

magnitude faster than most systems used by Prolog programmers[Dob85].

5. General design of ASP

ASP is conceived of as a number of cooperating programs hung on a

skeleton, rather than a single large program. This organization produces a

number of benefits. First, it facilitates an incremental development strategy:

programs may improve so long as they do not change their interfaces. A second

benefit is the trail of tools left behind for those wishing to use some of the

algorithms and methods of ASP without using the entire package. Finally, this

approach permits human intervention in the place of any particular program;

this is particularly useful in the development stage, when individual

components may not yet be completed. Of currently-reported silicon compilers,

Bell Labs' CADRE (AckS5] comes closest to this overall organization.

7/

From a software engineering standpoint, such a design can work only if

the organization of the overall package is simple. Furthermore, since

individual components may or may not be present, interfaces must be identical

(or nearly so). There are three reasons for this. First, one program should not
o.. . °

be dependent upon the presence of any other program within the overall

environment; its only dependency should be upon the presence of data. Second,

no program should specify or use more than a single output or input interface;

it is clear that if each program specified its own input interface, then each

program would have to specify n output interfaces. Worse, if any new programs

were added to the ASP system, the programmer would be forced to modify the

output routines of each other program in the system. Third, no area in design

automation is mature: programs and techniques are evolving rapidly. Hence

we wish to provide for independent evolution of each component. This in turn

requires that the evolution of any single component be transparent to the

remainder of the system.

Ideally, then, all the programs should use the same data structure.

Although this simplifies the interface problem, it puts a great deal of stress on

the structure itself: it must be easily described, accessed, and modified, yet

flexible enough to accommodate a wide variety of applications without

modification.

&. The Constrained Hierarchical Schematic
'.:..-,.

ASPs basic data structure is the constrained hierarchical schematic (CHS). L

A CHS consists of basic circuit elements and other CHS's which serve to

.7,

\\ -. ..

8

describe the circuit in a hierarchical fashion. Each CHS is constrained by a

series of notations, which serve as a full description of the electrical, structural, -%

and behavioral properties of the cell in question. These notations include size

constraints on the bounding box, protection frames for each mask layer, the

presence and coordinates of feedthroughs, the name of the circuit element,

constraints on its performance, on the capacitive load of each input and drive

resistance of each output.

6.1. CHS Definition

A Constrained Hierarchical Schematic (CHS) is a data structure realized

as a Prolog clause, with the following fields (coordinates are always non-

negative integers in terms of a single parameter, lambda):

(1) Name - the name of the function that this CHS implements.

(2) Bounding Box - a height/width pair giving box dimensions.

(3) Ports - a list of physical connections, data structures of the following form:

port(Signal, Xl, Y1, X2, Y2, Levels) where Signal is the name of the signal

carried at the port, and X1, Y1, X2, and Y2 are the xjy coordinates of the

lower left and upper right coordinates of the port, and Levels is a list of the

Levels on which the signal may be carried.

(4) Inputs - a list of data structures of the form:

signal(SigName, DriveBy, Capacitance, Resistance)

where SigName is the name of the signal, Capacitance is the capacitance .-
ZAN

(in pf) of the load, Resistance is the total resistance of the load in ohms,

%-'

and DrivBy is the time to charge or discharge the node in nanoseconds. - -

151 Outputs - a list of data structures of" the same form as input; in this case, ,:

the variables do not specify capacitance, resistance, or required drive time;

, . %'

~~~they state capabilities.

('i6) Substructure - a lito ntne fCHS's, wires, trnitr andvi "

which make up the CHS.: .

(7) UC../n - a hist of the unbound constraints that must not be violated by this"-

CHS (or, if you prf'er, a list of" the unbound constraints of the system when "

this CHS is instantiated); "'

(8) UnboundConstraints - a list of the unbound constraints of the system ...

following the instantiation off this CHS. .€

Every field here should be self-evident, save the UC_.In and Unbound --

Constraint fields. The purpose of these will be explained below. " "

The instance of a CHS is the CHS with two additional fields: Position,

which is the position of the CHS within its parent-, and Orientation, which is"--.

one of the eight Manhattan transforms within the plane.

() p CHS Constraints And the Body of A CHS oi

A consistent problem in automatic IC design has been the expression of
constrain variables in a design template. For example, consider the static

CMOS inverter depicted in figure 1. Both the input port and the output port . ':

are constrained in that they must lie on the left and right boundaries,

rsuptively,and must lie between the rows rserve or the p and n transistors. s

which makeup.the-CHS

.pp .



10

Further, the ultimate values of the rows used for the ports must be bound into

the substructure, since these values determine the position of the wires that run

between the ports and the connection to their signal columns.

We found an elegant solution in the logical variable and the natural

representation of both code and date in Prolog. In Prolog, a procedure is a

sequence of clauses; and each clause is of the form:

clausehead . oall, goal2,..., goaln.

which is read "clausehead is true if goall,...,goaln are true".

This representation led us to the idea that a CHS is best represented as a

clause with the head as the structure described above, with unbound variables

for any quantities unspecified, and the body as a set of constraints on those

quantities.4

This can be made clearer with an example. In figure 2, we give the

relevant subset of the inverter CHS, and its body. Ellipses mark elided

arguments and irrelevant aspects of substructure.

The pictured here, with the pictured subset of its associated constraints, _ ,

specifies an inverter whose power and ground and input and output ports are

constrained to lie on the left and right edges of the inverter's bounding box, but

may lie anywhere on those edges subject to the constraints given. The

constraints given are derived from the technology design rules, and are the

subgoals of the inverter's CHS clause. The constraint names should be read as

"ge" for "> =","eq" for "equal", and so forth.

-... ,.....



cha( inverter,
box(X31ze, Ysize),

[ port(vdd,O,O, VddLine, VddLinel, (metalli),
port(vdd, 0, VddLine, Xsize, VddLinel, (metall]),
port(gnd, 0, GndLinel, XSize, GndLine, [metall]),
port(gnd, 0, GndLineI, Xsize, GndLine, [metall]),
port(A, 0, Yinl, 0, Yin, [metall]),
port(B, XSize, X31ze, Youtl, Yout, (metall])], "

(signal(A ........... Al%
[signal(B ......... ...

I...,wire(vdd, 0, VddLine, Xsize, VddLinel, metall),
wiz'e(gnd, 0, GndLinel, X31ze, GndLine, uetall),
iaire(A, 0, Yinl, 13, Yin, metall),
wire(D, X4~, Youtl, XSize, Yout, metall),
contact(A, X3, Yinl, X5, Yin2, metall, poly),

UnboundConstraints)-

eq(GndLine, GndLinel +.2, UOi, UC2),
le(VddLinel, Ysize, IJC3, UC4I),
ge(X3, 0, UCJ4, UM5,
eq(X5, X3.5, UM5 UC6),
eq(Yin, 2 Yin 1, UC6, UMC7,
eq(Yout, 2 + Youtl, UC7, UC8), V.0
ge(VddLine, Yin + 3, UC8, UC9),

ge(Yout, GndLine + 3, UCn, UnboundConstraints).

Figure 2 - Partial CHS Description of Inverter, with Relevant ConstraintsVA
3 This CHS returns (or, in Prolog parlance, "succeeds") iff all the subgoals

are satisflid. Further, the unification properties of the logical variable assures

that every instance of any logical variable is bound to the same value. Hence,

we are assured that any inverter which meets the constraints above will be

returned by this clause.



12

A question that occurs immediately is the following: what happens if the

variables are unbound when the clause is entered? This is the function of the

UCn and Unbound Constraint fields in the CHS clause, and the third and A

'v. fourth fields of each subgoal. Constraints which must be met but cannot be

checked, since they involve one or more unbound variables, are placed on the

list of unbound constraints. The maintenance of this data structure and its

resolution are detailed below; for now, we note that this variable permits this

specification clause to become a generation clause.

In addition, it is possible in Prolog to define several clauses for one

procedure; hence, several different inverter specifications may be given, and any

attempt to generate an inverter will try each in turn until one succeeds or all

have failed.

.3. Substructure and the Body of a CHS

When a CHS contains other CHS's as part of its substructure, the body of

the CHS clause acts as a generator of the sub-CHS's. It does this in two ways:

first, it instantiates the CHS's through a provided routine instantiatechs;

second, it acts to propagate constraints between the child CHS's. In particular,

it acts to pitch-match the ports on the sub-CHS's.

Consider, for example, the adder bitslice presented in figure 3. This adder,

based on the Manchester Carry Chain, is composed of three parts: logic to

pnerate the propagate/kill/generate signals; carry chain logic; and sum

generation logic.

..4%F U-- , r- .' " " "i . 4* " "' ,"% . . .*q.*~ ".. . "-. "



13

We wish to consider the example of an interface between CHS's, and for

this purpose we'll look at the interface between the CHS's representing the

carry chain and the propagation logic block. The relevant code appears in

figure 6. .

In this clause, instantiatechs is a routine which looks for CHS's of the

name of its first argument, which can fit into the box defined by the second and

third arguments if the CHS is oriented as specified by the fourth argument and

if the unbound constraints given in the fifth argument are met and modified to

the unbound constraints given in the sixth argument; the seventh argument - -

contains the template of the CHS which has been instantiated. findPorts is a .... '._
chs(adder,

box( XSize, YSize ), p

ohs struct(propLogic,position(X1,O),position(X2,Ysize),Orientl,UClPL),
chs struct(carryLogic,position(X2,O),position(X3,Ysize),Orient2,UC2,CL),

UC In, 
,.. . *,

UnboundConstraints) :-
instantiate chs(propLogic,position(X1,o),position(X2,Ysize),Orientl,UC In,UC1,PL
instantiate ohs(oarryLogio,position(X2,O),position(X3,Ysize),Orient2,UC1l,UC2,CL,
findPorts(PL, position(X1,O), Orienti, x, X2, Portsl ), I V % %'

findPorts(CL, poaition(X2,O), Orient2, x, X2, Ports2),
matchPorts( Portsl, Ports2, UC2, UC3 ),...

"'.

Figure 6 -Body of A Clause which Contains CHS's. ""V.

pO er*

* 'p1



14

routine which finds all ports on the given CHS, if its lower left corner is as *

specified by position and its orientation is specified by orientation. It finds all

ports on the boundary marked by its fifth argument for the dimension given by I
its fourth. matchPorta reconciles two lists of ports, if possible, again updating

the set of unbound constraints.

6.4. Unbound Constrainto

The above works quite well if all the logical variables are bound or

instantiated when the CHS is instantiated. Often, however, this is not the case:

in particular, the location of an output port may be bound to an unbound

variable representing a location in the parent cell. In this case, the constraints

are attached to the unbound constraint field in the instantiation of the CHS,

and whenever a variable in the instantiation of the CHS is bound to a value, y'.

the unbound constraint field is checked for constraint violation, and the

constraint list is updated.

The constraints on a variable are kept as follows. If a variable is unbound

but constrained, it is set to a data structure of four values: the value of the

variable (currently unbound); upper and lower bounds on the variables value

(initially set to infinity and -infinity) and a list of constraints on the variable.

When a new constraint is added, the bounds are updated, if possible, and the

constraint' list is checked; if the new constraint is incompatible with other

constraints, the chs clause fails; if the new constraint is redundant, nothing is

changed; otherwise, the now constraint is simply added, and constraints on

variables which are constrained by this variable are updated, recursively.
• .. .5



15

These lists are maintained by the constrained routines Iq, go, Is, etc.

At the end of the design process, the unbounded constraint variable may be

empty, in which case the design is completely specified. If it is not, however,

then the fnal specification of the design involves an integer programming

problem. However, we believe that this integer programming problem will be

relatively easy to solve, since any feasible solution is acceptable and since we

believe that in practice most designs are not underconstrained.

6.. Implications of the CHS

This schematic clearly permits hierarchical structures to be modeled.

Furthermore, it allows different programs to view the circuit at various levels of

abstraction. For example, the chip floor planner divides the circuit into two

CHS corresponding to the control and data path respectively, not worrying .

about any greater detail, while the layout generator deals with the mask level.

One great advantage of the isotropy of the CHS - the fact that a CHS can _ _'

contain CHS as part of its description - is the possibility of algorithms which

work on multiple levels of abstraction. For example, since both individual gates

and bitslice cells within the data path (such as the ALU, shifter, etc.), are

represented as CHS, both our timing analyzer and our layout generator, which

were designed to work at the gate level, are able to work at the data path cell

level. We expect this property to aid the development of multi-level simulation.,'

The choice of the CHS as the principal data structure is related to the

choice of constraint propagation as the design methodology. A good design is

one that mets constraints. At the user level, a chip is merely a piece of silicon

',.10

l F -w• - w . q r q r • e = w - .r - v . el ' , • I



* .. ..

16

that must be less than a given area, performs a given function in a given time

and consumes les than a given amount of power. ASP works by partitioning

the constraints at any level among component pieces, and then designing the

piees. .

7. ASP Chip Methodology

In addition to a design methodology and a central data structure, a silicon

compiler requires a chip methodology: a partitioning of the chip generation

software into modules. In this section we briefly present our chip methodology

and relate it to the constrained hierarchical schematic.

Our divisions are based on Pendleton's (Pen85]. We identify seven

partitions in chip design: register transfer, interface, data path unit, data path

organization, control unit, control organization, and interconnect. Above those
5"% '..'.

is general microarchitecture design. The task at this higher level of design is

the translation of an ISP-like description to some register-transfer description of

the chip. We believe the major performance gains and interesting research

issues tend to lie here, but we are currently devoting our efforts to the lower

levels, since they are better understood, and since they must be done reasonably

well before we can hope to successfully address the major issues at the

microarchitecture level. The lower levels of design form a substrate upon which

we hope to build a microarchitectural expert

'.*:::.
.

* -.
,S" . o.

q



17 A

7.1. Register Transfer A-

The task at this level is to map the behavioral RTL description produced at

the microarchitecture level, by tools or a human architect, into CHS circuit

structures. The RTL description mechanism is tuned to high performance

processors rather than algorithmic style. The translator will produce both

functional simulations for design verification and CHS's.

7.2. Interface .

ASPs strategy for this level is to use design frame technology (Bor85]. For

a given bus, a design frame and a universal interface providing pads, control

PLA, and data registers will be supplied by ASP.

7.3. Data path Unit

There are at least four approaches to the problem of functional unit

generation: standard cells, parameterized cells, module experts and module

generation. The organization of ASP as a set of cooperating programs permits

the use of any such approach. The program which translates the data path cell .0,a

description to a physical layout can either make use of a standard cell library or

I generate the layout Itself; it makes no difference to the other programs

comprising ASP.

. path Orgnition

.-... % 'e

The problem at this level is, given a bus/block-connection schematic,

arranging the data path blocks so that constraints are met on the total length

of any bus and on the total width of the widest cell in the data path. A variety

.. . ... . . 4 . . .



of approaches, from force-directed placement through variations on Wing's

algorithm through breadth-first search heuristics are in experimental use here.

The interesting thing to note here is that this is the same problem as block.

placement in non-folded CMOS gate matrices, and can be attacked by the same

algorithm, a non-obvious identity that becomes clear when it is realized that a

CHS may represent either a data path or functional blocks within a gate

matrix.

TAL Control Unit V.

As with data path unit generation, there are a number approaches to the

problem. Control units may be implemented as ROMs, PLAs, Weinberger

arrays or gate matrices. Similarly, the control unit generator can choose a

physical layout independently from other ASP tools.

T.G. Control Organization

Control partitioning, state encoding, and microorder decoding are dealt

with at this level. One area under active exploration is functional partitioning

of control structure and functional state encoding. An example of the latter

may be found in Ullman[U1841: the justification is that for most forms of logic

layout (except for ROMs) the number of state bits is not a metric that should be
op"timized.

-- ".

7.7. Interconnect

In microprouaor design. routing may be said to have three major

components- globe routing (from the pads to the interace registers), maze

O



19

routing in the data and control paths, and routing in the control path/data path

channel. Global routing is fixed as part of the interface design. In the data %-%

path, horizontal routing is done in first layer metal, area provided for by either

feedthroughs in the cells (for parameterized or generated cells) or by an routing

channel over each bitslice (for fixed cells), and vertical routing is done in

second-layer metal and hence is transparent to horizontal routing. Timing-

directed routing is being explored for inter-path routing, since the timing
*% 4,

constraints are easily captured by the CHS.

. Other Integrated tools
-4. ,,

In principle, each of the levels of chip design can be viewed as a separate
* %* a.j

tool. Each should be able to stand on its own, but they are designed to work

cooperatively. A few other important tools do not fit so nicely into the

decomposition above; in general, these will be used as components in more than

one of the levels.

.1. Multi-level simulation

The phrase mdti-leuel simulation refers to the possibility of simulation

occurring at different levels of abstraction. A circuit simulator such as SPICE
,. .' .',

views the chip at an extremely low level, while a switch-level simulator like
ZSIM works at a higher level, and a gate-level simulator still higher. This

'.0

corresponds to different elements - wires, transistors, or gates, respectively -

of the circuit being viewed as primitives.

A'.I%



- 20

, ,

Two kinds of simulation are required: correctness checking and timing

analysis. For example, an RTL checker can be used to test whether there is a

difficulty at this level; if so, there is no point in continuing the translation

process. Multi-level simulation is facilitated by the isotropy of the data

structure. Similar algorithms should be used to perform the simulations on

different levels. At the very lowest level, however, ASP will simply provide an

interface to SPICE.

6.2. Transistor Sizing and Ordering

The control and module generators will generate functionally correct

transistor-level schematics. In order to achieve desired performance criteria,

-'. however, it may be necessary to attach size constraints to various transistors to

speed up the circuits critical paths. Furthermore, in many cases the order of

series transistors can not be determined until some timing information is

known. The MOST (Method for Ordering and Sizing Transistors) program

[PiDe861 takes care of both of these tasks.

Clearly these tasks require some level of timing analysis. However, since .

MOST occurs before layout, the estimations of interconnect resistances and

capacitances will necessarily be only approximations. Thus, the timing

analyzer is on the level of Crystal, rather than Spice; this is also important for

speed reasons.

; '..

9, .% %

I%



211
%- -. I*.

9. Conclusion

ASP is both a silicon compiler and a vehicle for research and

experimentation in automated design of CMOS microprocessors. The

framework of ASP is therefore designed to permit incremental improvement

and evolution. This is accomplished in three ways: the use of a single flexible

data structure as a common interface to all component programs, constraint-

passing as the sole mode of communication between programs and the choice of

an implementation language that is an extension of a relational database,

which permits the natural modeling of the data structure and the natural

inclusion of rule-based, database and algorithmic methods.

10. Acknowledgements

The authors wish to acknowledge the many fruitful and enlightening

conversations we've had with our colleagues at UC-Berkeley. In particular, A

Walter Scott, Bob Mayo, Gordon Hamachi, Joan Pendleton, Gaetano Borriello,

Fred Obermeier, Randy Katz and Glenn Adams have been most helpful.

Andrew Kahng read early drafts of this report and provided many helpful

suggestions. Our colleagues on the Aquarius Project at UC-Berkeley have

provided much moral and intellectual support. This research was sponsored by * .

the Defense Advanced Research Projects Agency under Order 4871, monitored

by the Naval Electronic Systems Command, Contract N00039-84-c-0089.

1.. •

y-o°"... 
°.



• .ft.•..

ft.1 
22

ftp. ,.-

11. References

[Ack85] Ackland, B., et aI, "CADRE - A System of Cooperating VLSI experts",

[Bor851 Borriello, G., and Katz, R., "Design Frames: A New System Integration

.• .%' Methodology", 1985 Chapel Hill Conference on VLSI, May 1985.

[Cha85] Chang, J. H., "High Performance Execution of Prolog Programs Based

on Static Data Dependency Analysis", Ph D Thesis, Computer Science Division,

University of California at Berkeley, Berkeley, CA, 94720.
1%f'a.

-

[Dob85] Dobry, T. P., et al., "Performance Studies of a Prolog Machine

Architecture", Proceedings of the Computer Architecture Conference, June 1985

[Joh79] Johannsen, D., "Bristle Blocks: A Silicon Compiler", Proc. 16th Design

Automation Conference,, June 1979.

[Pen85] Pendleton, Joan M., "A Design Methodology for VLSI Processors", Ph D 7"t"

Thesis, Department of Electrical Engineering and Computer Science, UC -:

Berkeley, Berkeley, CA, 94720, 1985.

[PiDe86] Pincus, J. and Despain, A., "Delay Reduction using Simulated

Annealing", these proceedings, June 1986.

[SiSoC821 'Siskind, J., Southard, J., Crouch, C., "Generating Custom High-

Performance VISI Designs from Succinct Algorithmic Descriptions", Proc. Conf.

Aduanced Research in VLSI, P. Penfield., Ed., MIT, Cambridge, MA, Jan 1982. '-t

!%

A 1

" ... "

t , -t C .',"t. tf' V*f t W " .. %.;*;.::...' .. " -.. -'f.': *''.-" .-. ".. .- '*. -p ".""-i. '-.-i.*i.'" -. " i'. ."ft -"ft -
-ft% %f - . ft %A.ft',f %t~t * '. ftf % - f"*- . . q-o ,- * .' .- % ft.



23

[U1184] Ullman, J. D., "Computational Aspects of VLSI", Computer Science

Press, 11 Taft Court, Rockville, MD, 20850

, %

% ..

* J










